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ABSTRACT

Segmentation and crustal accretion at oceanic transform fault systems are
investigated through a combination of geophysical data analysis and geodynamical and
geochemical modeling. Chapter 1 examines the effect of fault segmentation on the
maximum predicted earthquake magnitude of an oceanic transform fault system. Results
of thermal modeling suggest that fault segmentation by intra-transform spreading centers
(ITSC) drastically reduces the available brittle area of a transform fault and thus limits
the available earthquake rupture area. Coulomb stress models suggest that long ITSCs
will prohibit static stress interaction between segments of a transform system and further
limit the maximum possible magnitude of a given transform fault earthquake. In Chapter
2, gravity anomalies from a global set of oceanic transform fault systems are investigated.
Surprisingly, negative residual mantle Bouguer gravity anomalies are found within fast-
slipping transform fault domains. These gravity observations suggest a mass deficit
within fast-slipping transform faults, which may result from porosity variations, mantle
serpentinization, and/or crustal thickness variations. Two-dimensional forward modeling
and the correlation of the negative gravity anomalies to bathymetric highs indicate crustal
thickness excesses in these locations. Finally, in Chapter 3, mantle thermal and melting
models for a visco-plastic rheology are developed to investigate the process of mantle
melting and crustal accretion at ITSCs within segmented transform faults, and are applied
to the Siqueiros transform fault system. Models in which melt migrates into the
transform fault domain from a large region of the mantle best explain the gravity-derived
crustal thickness variations observed at the Siqueiros transform. Furthermore, a mantle
potential temperature of 1350°C and fractional crystallization at depths of 9 — 15.5 km
best explain the major element composition variation observed at the Siqueiros transform.
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INTRODUCTION

The global mid-ocean ridges are segmented by more than 120 transform fault
systems. These transform fault systems are critical for accommodating the geometry of
the ridge system as well as crustal accretion. The primary focus of this Ph.D. thesis is
the investigation of oceanic transform faults using a multidisciplinary approach. Chapter
I explores the seismicity of oceanic transform faults and examines the relationship
between fault segmentation and earthquake rupture. Chapter 2 utilizes residual mantle
Bouguer gravity anomaly (RMBA) calculations, 3D thermal models, and 2D forward
models to investigate the structure of a global set of transform faults. Finally, in Chapter
3, I develop combined geodynamical and geochemical models to constrain melt generation
and extraction at segmented transform fault systems. Below, | present a brief description

of each of these studies and their primary conclusions.

In Chapter 1, I combine Coulomb static stress models with available geological and
seismicity data to illustrate the importance of fault segmentation in models of earthquake
interaction at oceanic transform faults. The 2D thermal models demonstrate that fault
segmentation decreases the maximum magnitude of earthquakes by decreasing the brittle
area thus limiting the fault rupture of the transform fault system [Gregg er al., 2006].
Coulomb static stress models are used to explore whether adjacent fault segments behave
independently of each other, and how their stress interaction depends on their offset
distance. 1 find that, if intra-transform spreading centers are sufficiently long, adjacent
transform fault segments will be decoupled and behave independently of each other. 1|
also demonstrate the likelihood of stress interaction between strike-slip earthquakes and
normal faults at nearby spreading centers. These findings are important for understanding

the seismic budget of oceanic transform faults.

In Chapter 2, I analyze 3D gravity anomalies for 19 oceanic transform fault
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systems globally. By evaluating transform faults from several mid-ocean ridge systems
using 3D gravity inversions, 3D thermal models, and 2D forward models, I show that
there is systematic variation in the gravity signature of oceanic transform faults as a
function of their slip rate [Gregg et al., 2007b]. The spreading-rate dependency of the
gravity anomalies is especially evident at fast-slipping transform faults where I find more
negative RMBA values in comparison to the adjacent ridge axes. All previous studies of
slow-spreading mid-ocean ridges have shown more positive RMBA values within the
transform fault domain instead, indicating crustal thinning at the end of ridge segments and
focused crustal accretion at ridge segment centers [Kuo and Forsyth, 1988; Lin et al.,
1990]. Based on 2D forward models and available geological data, I propose that the
negative RMBA values observed at fast-slipping transform faults indicate that fast-
slipping systems have excess magma supply and increasing crustal production within the
transform fault domain. These findings directly contradict the classic models of crustal
accretion at mid-ocean ridges and require further investigation to determine the source of

the negative RMBA at fast-slipping transform faults.

In the final chapter of my thesis, I look at the process of mantle melting and melt
extraction at fast-slipping transform faults in an effort to explain the findings of increased
crustal accretion at these systems [Gregg et al., 2007b]. 1 combine thermal models of
segmented ridge-transform-ridge systems with fractional melting [Kinzler and Grove,
1992b; a; 1993] and fractional crystallization models [Yang et al., 1996]. The melt
migration model of Sparks and Parmentier [1991] is used to investigate the source region
of intra-transform spreading centers and examine two end-member melt aggregation
models of wide vs. narrow melt pooling regions. I apply these models to the specific case
of Siqueiros transform fault on the East Pacific Rise where there has been extensive
geological and geophysical mapping [Fornari et al., 1989; Carbotte and Macdonald, 1992,
Gregg et al., 2007b], as well as sampling via dredge and Alvin dives [Perfit et al., 1996;

Hays et al., 2004]. Our findings suggest that in order to explain the estimated crustal
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thicknesses indicated by the RMBA calculated at Siqueiros, melt must be pooled from
large distances into the transform fault domain. Furthermore, we find that a mantle
potential temperature of 1350C and fractional crystallization at depths of 9-15.5 km best
fits the geochemical observations at the Siqueiros transform fault system [Perfit et al.,
1996; Hays, 2004]. These melt migration models provide us with first-order insights into

the geological processes that may be occurring at the Siqueiros transform fault.

FUTURE DIRECTIONS

The research contained in this thesis is a starting point for the development of
many exciting projects for the coming years. In the future, I plan to extend my
investigation to study several first-order geological processes.

Coulomb stress modeling is an invaluable tool for estimating static stress transfer
following an earthquake or diking episode and determining likely locations for subsequent
events [e.g., King et al., 1994]. As part of this thesis, I successfully used stress models to
illustrate earthquake interaction at oceanic transform faults and the stress interaction
between strike-slip earthquakes and normal faults at nearby spreading centers [Gregg et
al., 2006]. It has also been suggested that stress transfer due to tectonic events can
stimulate interactions between volcanoes and earthquakes. In particular, recent research
on Hawaii has illustrated striking correlations between dike intrusions and earthquake
occurrence at Mauna Loa [Walter and Amelung, 2004; 2006; Amelung et al., 2007;
McGovern, 2007]. These techniques can also be applied to understanding continental
rifting; specifically, what is the stress interaction between dike injection during rifting
change and subsequent faulting events? For example, temporal and spatial seismicity
patterns along the East African Rift system indicate that there is ongoing stress
interaction between adjacent rift segments via diking and faulting events [Aronovitz et al.,

2007]. Increasing our understanding of how earthquakes and volcanoes interact in settings
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such as Hawaii and Africa is also important for aiding our ability to assess future hazards,
which is a direction I plan to pursue.

The spreading rate dependence of mid-ocean ridge morphology is widely
observed. Typical slow-spreading ridges are characterized by axial valleys and large
topographic variations, whereas fast-spreading ridges are generally associated with axial
highs and smoother topography [Macdonald, 1983]. However, in many locations it
appears that magma supply may play an even greater role in controlling the ridge
morphology than spreading rate. This paradox remains one of the first-order problems in
understanding the dynamics of mid-ocean ridges. For example, the Cleft segment of the
Juan de Fuca Ridge north of the 350 km-long Blanco transform fault has the morphology
of a fast-spreading ridge and is thought to be magmatically robust, while the Gorda ridge
to the south of Blanco, which is also spreading at a rate of 5.8 cm/yr, exhibits an axial
valley typical of a slow-spreading ridge and is considered magmatically starved [Embley
and Wilson, 1992; Hooft and Detrick, 1995]. Other examples include two adjacent
segments at ~18°S on the fast-spreading East Pacific Rise separated by a small non-
transform discontinuity [Sinton et al., 2002] and adjacent segments at ~114°E along the
intermediate spreading South East Indian Ridge (SEIR), which are separated by a 100
km-long transform fault [Cochran and Sempere, 1997; Buck et al., 2005; Gregg et al.,
2007b]. Not only is the apparent decrease in magma budget visible in the morphology of
these ridge segments, it is also observed in seismic and gravity data [Hooft and Detrick,
1995] as well as in the major and trace element geochemistry of lavas from these settings
[Rubin and Sinton, 2007]. At present it is unclear why adjacent segments spreading at the
same rate are in such stark contrast to each other, and our current understanding of the
physics behind mid-ocean ridge spreading does not fully address this problem. Possible
explanations may include thermal effects due to ridge offsets, regional tectonics, mantle
flow variations, mantle buoyancy [Buck et al., 2005], and mantle source heterogeneities. 1

plan to explore this research direction in the future.
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In chapter 3 of this thesis I have developed techniques for coupling geodynamical
and geochemical models, which can be constrained by geochemical and geophysical data to
examine the driving forces governing the magma budget of a ridge segment and the
resultant ridge morphology and geochemistry. These models can be further developed by
accounting for the effect of fractional melting and crystallization on the trace element
composition of extruded lavas at mid-ocean ridges. As part of my thesis work, we have
made significant advancements in understanding geodynamical models by coupling them
with fractional melting [Kinzler and Grove, 1992a, b; 1993] and fractional crystallization
models [Yang et al., 1996]. Incorporation of trace elements into these models will further
strengthen their capabilities and provide another independent variable for comparison
with geochemical observations, a direction that I am interested in exploring in
collaboration with geochemist colleagues.

Hydrated oceanic lithosphere is an important component of the subduction zone
system. It is widely accepted that water plays a fundamental role in the processes of
mantle melting and, subsequently, arc volcanism in the subduction setting. However,
very little is known about the actual water budget available from hydration of the oceanic
lithosphere. Two popular models for oceanic lithosphere hydration include: 1) the
serpentinization of the upper lithosphere at oceanic transform faults and fracture zones;
and 2) hydration of the upper mantle to depths of 40 km at large-scale normal faults
flanking the outer rise (thought to be the result of the bending of the slab as it subducts)
[Hacker et al., 2003]. However, it is unclear whether these two mechanisms are viable
and if so, how much water is locked into hydrous phases within the down-going plate at
these locations. This is another direction for future exploration.

During my thesis work, I have become increasingly interested in the effects of
lithospheric hydration as a way to explain negative gravity anomalies found within fast-
slipping oceanic transform faults [Gregg et al., 2007b] as well as seismic moment deficits

observed at many oceanic transform faults [Boettcher and Jordan, 2004]. In the past
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couple of years we have developed several 3D thermal models for various transform fault
geometries and mantle rheologies [Bekn et al., 2007; Gregg et al., 2007a], as well as the
inclusion of hydrous phase stability fields to assess localized hydration [Roland et al.,
2007]. A powerful result of these modeling efforts is the ability to estimate water
budgets expected from oceanic transform faults of varying spreading rate and geometry.
The next step in these calculations is to look at hydration in the inactive fracture zones
and explore the dehydration of these sections of the oceanic lithosphere as they are
incorporated at subduction zones at settings such as the Chile Triple Junction or the

Blanco Fracture Zone.
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CHAPTER 1: Segmentation of transform systems on the East Pacific Rise:
Implications for earthquake processes at fast-slipping oceanic transform
faults

ABSTRACT

Seven of the eight transform systems along the equatorial East Pacific Rise from
12°N to 15°S have undergone extension due to reorientation of plate motions and have
been segmented into two or more strike-slip fault strands offset by intratransform
spreading centers (ITSCs). Earthquakes recorded along these transform systems both
teleseismically and hydroacoustically suggest that segmentation geometry plays an
important role in how slip is accommodated at oceanic transforms. Results of thermal
calculations suggest that the thickness of the brittle layer of a segmented transform fault
could be significantly reduced by the thermal effect of ITSCs. Consequently, the potential
rupture area, and thus maximum seismic moment, is decreased. Using Coulomb static
stress models, we illustrate that long ITSCs will prohibit static stress interaction between
transform segments and limit the maximum possible magnitude of earthquakes on a given
transform system. Furthermore, transform earthquakes may have the potential to trigger
seismicity on normal faults flanking ITSCs.

Published as P. M. Gregg, J. Lin, and D. K. Smith, Segmentation of transform systems on the East Pacific
Rise: Implications for earthquake processes at fast-slipping oceanic transform faults. Geology, v. 34, no. 4,
p. 289-292, 2006.
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INTRODUCTION

Segmented transform systems are composed of several fault strands offset by short
ridges or rifts referred to as intra-transform spreading centers (ITSCs) (Menard and
Atwater, 1969; Searle, 1983; Pockalny et al., 1997), where active seafloor spreading and
crustal accretion are occurring (Fornari et al., 1989; Hekinian et al., 1992; Perfit et al.,
1996). Along the equatorial East Pacific Rise between 15°S and 12°N (Fig. 1), the
Siqueiros, Quebrada, Discovery, Gofar, Yaquina, Wilkes, and Garrett transform systems
have all undergone transtension due to changes in plate motions, and each of these
transforms is segmented by at least one ITSC (Searle, 1983; Fornari et al., 1989;
Lonsdale, 1989; Goff et al., 1993; Pockalny et al., 1997). The Clipperton transform
system has undergone several periods of transpression (Pockalny, 1997), and is the only

unsegmented transform system along the equatorial East Pacific Rise.

The global deficiency of seismic moment release on oceanic transform systems has
led researchers to hypothesize that a significant portion of oceanic transform slip is
accommodated aseismically (e.g., Boettcher and Jordan, 2004). However, global
seismicity studies have yet to consider the prevalence of transform fault segmentation.
Dziak et al. (1991) observed that earthquake sizes generally correlate with the lengths of
individual fault segments at the Blanco transform fault. Our observations of earthquakes
recorded on East Pacific Rise transform faults indicate that segmentation is an important
factor influencing rupture of large earthquakes at oceanic transforms. While it has been
shown that segmentation and fault steps play an important role in controlling the
earthquake behavior of continental strike-slip faults (e.g., Harris and Day, 1993), the
influence of segmentation and ITSCs on earthquake processes at an oceanic transform

system has not been studied in detail.

In this paper, we use teleseismically and hydroacoustically recorded seismicity data
from the equatorial East Pacific Rise and Coulomb static stress models to explore the

effect of ITSCs on static stress interaction between transform fault segments. We
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Figure 1. Regional map of the equatorial EPR showing large transform and non-
transform offsets. Segmentation geometry is included based on previous geological
mapping of the transform systems (e.g., Fornari et al., 1989; Lonsdale, 1989). Inset:
Regional map showing location of the full array of NOAA Pacific Marine Environmental
Laboratory hydrophones.
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Figure 2. Comparison of estimated areas of brittle lithosphere using a one-dimensional,
steady-state lithosphere cooling model (McKenzie, 1969) for the Clipperton (B) and
Siqueiros (C) transforms. A: The 90 km Clipperton transform system (X—X") and the 150
km Siqueiros transform system (Y-Y’), which is broken into five major segments S1, S2,
S3, S4, and S5 separated by four ITSCs SA, SB, SC, and SD (Fornari et al.,1989). B:
Calculated area of brittle lithosphere for temperatures <600 8C (shaded region) for the
Clipperton transform. C: Comparison of the calculated areas of brittle lithosphere for the
Siqueiros transform for a model of unsegmented geometry (area above the dotted line)
versus a model consisting of five individual segments offset by steady-state ITSCs
(shaded area).
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investigate whether adjacent fault segments can behave independently of one another,

and how the interaction between segments depends on their offset distance.

TRANSFORM SEGMENTATION

Segmentation of the transtensional transform systems at the equatorial East Pacific
Rise has resulted in individual strike-slip fault strands with lengths of 18-89 km, with an
average of ~37 km. The ITSCs separating the fault strands have lengths of 5-20 km, with
an average length of ~11 km. Fresh lavas collected from the ITSCs within the Siqueiros
and Garrett transforms (Hekinian et al., 1992; Perfit et al., 1996) indicate that ITSCs are
magmatically active, implying that the regions beneath them are hotter, and thus the
lithospheric plate is thinner than the surrounding domains. To explore the effect of
segmentation on the transform fault thermal structure, we use a half-space steady-state
lithospheric cooling model (McKenzie, 1969; Abercrombie and Ekstrom, 2001). The
temperature within the crust and mantle, 7, is defined as 7' = Terfly(2x7) "], where T,, is
the mantle temperature at depth, assumed to be 1300°C; y is the depth; k is the thermal
diffusivity, assumed to be 1,026 m’s’'; and 7 is the age of the lithosphere obtained by

dividing distance from the ridge axis by half the spreading rate.

Figure 2 compares the calculated areas of brittle deformation, defined as regions with
calculated temperatures < 600°C, for the geometries of the Clipperton and Siqueiros
transform systems. The calculated area under the 600 °C isotherm for the Clipperton
transform fault is 326 km®, compared to 710 km* for a model of a single unsegmented
fault with the cumulative length of the Siqueiros transform system. When the actual
segmentation geometry of the Siqueiros transform system is considered, however, the

integrated area of the calculated brittle deformation region is decreased by ~60% to 277

Y

V4

km"®.

Seismic moment (M,), which reflects the energy released by an earthquake, 1s a
function of the rupture area of the fault. Specifically, M, = G x D x S, where G is the
shear modulus, estimated to be 27 GPa from seismic velocities (Canales et al., 2003), D

1s the average slip, and S is the estimated brittle area. The resulting moment magnitude is
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Mw = (2/3) x log(M,) -10.73. For a model of constant stress drop during pure strike-slip
earthquakes, M, = (1/2) x Ac x w x S, where Ao is the earthquake stress drop, and w is

the fault width, estimated from S divided by fault length (Stein and Wysession, 2003).

Curves in Figure 3 show the predicted earthquake magnitudes for a given fault area,
assuming models of constant fault slip (Fig. 3A) or constant stress drop (Fig. 3B) during
earthquakes. Earthquakes recorded teleseismically as listed in the Harvard Centroid-
Moment Tensor (CMT) catalog were relocated to a specific transform segment using
hydroacoustically recorded earthquakes, which have smaller location errors (<6 km) (Fox
et al., 2001). The maximum earthquake magnitudes observed on each of the transform
fault segments at the equatorial East Pacific Rise from 1996 to 2001 are plotted in Figure
3. Assuming the complete rupture of a given individual fault segment, we can estimate
the amount of slip or the stress drop for a given earthquake. For example, the largest
earthquake observed on the Clipperton transform has a My of 6.6 (Fig. 3). If the entire
brittle area of Clipperton (326 km?®) was ruptured during this earthquake, the estimated

average slip 1s 1 m, or the estimated average stress drop is 53 bar or 5.3 MPa.

CoULOMB STRESS CALCULATIONS

Evidence for potential earthquake interactions along oceanic transform faults has
been noted in several investigations (e.g., Toda and Stein, 2000; Bohnenstiehl et al.,
2002, 2004; McGuire et al., 2002; Forsyth et al., 2003). We utilize the methods of King
et al. (1994) and Toda et al. (1998) to calculate how static stress from a moderate-sized
earthquake is transferred to adjacent faults, and assess the likelihood of rupturing
multiple transform segments during a single earthquake. According to Coulomb failure
criteria, when an earthquake occurs on a source fault, changes in Coulomb failure stress
(Aoy) on a receiver fault are expressed as Aoy = Ats + p' x Ao, where At and Ao, are
changes in shear and normal stresses, on the receiver fault, and p' is the apparent friction

coefficient adjusted for the pore pressure effect (King et al., 1994).
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calculations assume that the earthquake ruptures the entire transform segment. Black
dots mark the observed maximum My recorded on the transform segments of the
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Figure 4. Schematic models showing the geometry of two transform segments bisected
by a single ITSC of variable length, L. The source earthquake is located on the bottom
right transform segment with its left edge located at a distance, d, from the ITSC-
transform intersection. The source earthquake is assumed to be a strike-slip event on a
vertical plane parallel to the transform segment. A: A scenario in which the receiver fault
is a strike-slip fault located on the top left transform segment, which is assumed to have
the same dip, strike, and rake as the source earthquake. B: A scenario in which the

receiver fault is a normal fault located along the ITSC, which is assumed to have a dip of
608 and is parallel to the ITSC.
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We consider a simple geometry in which two adjacent transform segments are offset
by an ITSC of variable length, L, for two scenarios assuming the receiver faults are either
strike-slip events along the adjacent transform segment (Fig. 4A) or normal-faulting
events located along the ITSC (Fig. 4B). The rupture size for the source earthquake in
both cases is varied to reflect typical earthquake magnitudes observed along the

segmented transforms of the equatorial East Pacific Rise.

For the first scenario, the calculated maximum change in static stress,

|Aor [
transferred to the receiver fault is plotted versus L for Mw = 5.0, 5.5, and 6.0 (Fig. 5). As
the separation distance between the two transform segments increases, the predicted
maximum induced Coulomb stress change on the receiver fault decreases. For example, if
My, = 6.0, d = 0 km, and L is increased from 5 to 15 km, the calculated || Aoy || decreases
from 1.35 bar to 0.25 bar (Fig. SA). The proximity of the earthquake to the ITSC-
transform intersection (ITI) is also very important: the closer the source earthquake is
located to the ITI (i.e., smaller d), the greater the predicted maximum Coulomb stress
change on the receiver fault (Fig. 5). For example, if My, = 6.0, L = 5 km, and d 1s
increased from O to 10 km, the calculated ||[Acy| decreases from 2.5 bars to 0.1 bars.
Previous studies have shown statistically significant correlations between regions of
seismicity rate changes following continental strike-slip earthquakes and areas of

calculated stress changes > 0.2-1.0 bars (Toda et al., 1998).

In the second scenario (Fig. 6), for Mw > 5.0, a source earthquake with relatively
small d 1s calculated to cause significant Coulomb static stress increases on ITSC parallel
secondary normal faults. Such Coulomb stress changes correspond to a decrease in
normal confining pressure across the ITSC axis, which may result in triggering of normal
faulting earthquakes or magmatic diking events along the ITSCs. The predicted
Coulomb stress changes on secondary normal faults along the ITSC are a strong function
of the location of the source earthquake. For example, if My, = 6.0 and d 1s increased

from 5 to 10 km, the calculated ||Acq| decreases from 2.5 bars to 0.5 bar.
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Figure 5. Calculated maximum Coulomb stress changes on a secondary strike-slip
receiver fault caused by a strike-slip source earthquake (geometry shown in Fig. 4A) for
source earthquake My 5 6.0, 5.5, and 5.0. Note that the vertical scale is different for each
panel. All stress calculations were carried out using a three-dimensional boundary-
element model, Coulomb 2.6 (Toda et al., 1998), assuming that both the source and
receiver faults extend to a depth of 5 km. For each Coulomb calculation, we used a
Young’s modulus of 62.5 GPa, a Poisson’s ratio of 0.25, an apparent friction coefficient,
m9, of 0.4 (e.g., King et al., 1994), and a tapered slip distribution. Stresses are sampled
on a horizontal plane at a depth of 2 km. The maximum change in Coulomb stress is
taken directly from the point on the receiver fault where Coulomb stress reaches a
maximum value. Calculations were carried out for L 51 to 20 km andd 5 0, 2.5, 5, and
10 km. ITSC.
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Figure 6. Calculated maximum Coulomb stress changes on a secondary normal receiver
fault along the ITSC caused by a strike-slip source earthquake on the adjacent transform
segment with geometry shown in Figure 4B. The maximum change in Coulomb stress is
taken from the point on the ITSC where Coulomb stress reaches a maximum value. The

results shown are for calculations assuming a tapered slip distribution along the source
earthquake.
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Figure 7. Coulomb stress models for a teleseismically recorded earthquake (Mw = 5.7,
26 April 2001) on the Siqueiros transform system. Earthquake location is shown by
white star on each panel. A: Location map shows the segmentation geometry of
Siqueiros. Outlined region indicates area investigated in B, C, and D. B: Bathymetric
map overlain by the geologic interpretations (thin white lines) of Fornari et al. (1989).
White circles indicate the locations of the 170 aftershocks. C: Calculated Coulomb static
stress changes on secondary strike-slip receiver faults with the same dip, strike, and rake
as the source earthquake. Source fault parameters from Harvard CMT focal mechanism:
strike = 263°, dip = 81°, and scalar moment = 4.49 x 10** dyne-cm. We assume rupture
length = 5 km, width = 5 km and slip = 0.36 m. We used a tapered slip distribution and
stresses were sampled on a horizontal plane at a depth of 2 km.  Fox et al. (2001)
estimates a lower threshold for earthquakes recorded within the hydrophone array of Mb
= 1.0-1.8. The first 45 aftershocks (shown as white circles) occurred within 10 hours of
the mainshock and fall along fault segment S3. The 0.15 bar and 0.05 bar contours are
shown as solid black lines. We observe that ~31% of the first 45 aftershocks occurred in
regions with stress increases > 0.15 bars, and ~56% in areas with stress increases > 0.05
bars. D: Calculated Coulomb static stress changes on secondary normal faults dipping
60° and parallel to the ITSC SB. The later 125 aftershocks (shown as white circles)
correspond well with predictions of increased normal stress thus suggesting that they
might be associated with normal receiver faults. We observe that ~63% of the latter 125
aftershocks occurred in regions with stress increases > 0.15 bars, and ~ 90% occurred in
areas with stress increases > 0.05 bars.
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EXAMPLES OF POSSIBLE STRESS INTERACTION

Hydroacoustic monitoring of the EPR (Fox et al., 2001) has allowed us to investigate
several moderate sized earthquakes to determine the role of transform segmentation in
earthquake processes. Here, we have chosen one My = 5.7 teleseismically recorded
earthquake that occurred in April 2001 along the S3 segment of the Siqueiros transform
fault, which appears to have triggered seismicity on the S2 segment as well as on the
ITSC SB (Fig. 7). Coulomb stress models were calculated using the source earthquake
focal mechanism recorded in the Harvard CMT catalog, and the earthquake source

location was taken from the hydroacoustic earthquake catalog.

The mainshock ruptured the 24-km long S3 fault segment ~10 km from its
intersection with the 8 km-long ITSC SB. Approximately 170 aftershocks were recorded
hydroacoustically within 24 hr and 50 km of the epicenter of the mainshock. The first 45
aftershocks (Fig. 7C) occurred along the fault segment S3 within 10 hr of the mainshock,
and were spatially truncated by the ITSCs SB and SC. These aftershock locations
correspond well with areas of predicted static stress increase along the source fault and on
secondary strike-slip receiver faults along segment S3. Furthermore, the termination of
the aftershocks east of the source fault at ITSC SC agrees with predicted estimates for

segment interaction.

The subsequent 125 aftershocks (Fig. 7D) occurred on ITSC SB and the eastern end
of the adjacent fault segment S2. The static stress models assuming transform-parallel
strike-slip receiver faults do not predict this pattern of seismicity (Fig. 7C). Geologic
interpretations of Siqueiros transform by Fornari et al. (1989) indicate several ITSC-
parallel faults flanking ITSC SB to the east, west, and north (Fig. 7B). As the latter 125
aftershock locations correspond well with areas of increased Coulomb stress for normal
receiver faults, we hypothesize that these aftershocks might be associated with triggered
seismicity on the normal faults mapped by Fornari et al. (1989). The ITSC parallel
tectonic fabric was created by ITSCs SA and SB, which appear to have slow-spreading
ridge morphology (Fornari et al, 1989); this may account for the development of

seismically active normal faults. Another possibility is that these aftershocks may reflect
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a diking event near ITSC SB resulting from mainshock-triggered decreases in confining
pressure. Dynamic stress changes might also trigger aftershocks, but are difficult to

evaluate due to the lack of detailed mainshock rupture models.

CONCLUSIONS

Detailed analysis of earthquakes on transform systems at the EPR suggests that
segmentation geometry plays an important role in how slip is accommodated at fast-
slipping oceanic transforms. Results of Coulomb stress models suggest that the length of
the ITSC that offsets two transform fault strands will determine whether the adjacent
fault segments will interact by static stress transfer. If the ITSC is sufficiently long, the
adjacent segments will be decoupled and behave independently of each other. This is
particularly important in studies of earthquakes at oceanic transforms since a long
oceanic transform system, could be composed of several decoupled fault segments.
Moreover, we illustrate that the thermal effect of ITSCs may reduce the thickness of the
brittle layer, thus decreasing the potential rupture area and the maximum seismic moment
of an oceanic transform fault system. Finally, we suggest that transform earthquakes may

have the potential to trigger seismicity on secondary normal faults flanking ITSCs.
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CHAPTER 2: Spreading rate dependence of gravity anomalies along oceanic
transform faults

ABSTRACT

Mid-ocean ridge morphology and crustal accretion are known to depend on the
spreading rate of the ridge. Slow-spreading mid-ocean ridge segments exhibit significant
crustal thinning towards transform and non-transform offsets' '*, which is thought to
arise from a three-dimensional process of buoyant mantle upwelling and melt migration
focused beneath the centres of ridge segments'>* "' In contrast, fast-spreading mid-
ocean ridges are characterized by smaller, segment-scale variations in crustal thickness,
which reflect more uniform mantle upwelling beneath the ridge axis'® "°. Here we present
a systematic study of the residual mantle Bouguer gravity anomaly of 19 oceanic
transform faults that reveals a strong correlation between gravity signature and spreading
rate. Previous studies have shown that slow-slipping transform faults are marked by more
positive gravity anomalies than their adjacent ridge segments'**°, but our analysis
reveals that intermediate and fast-slipping transform faults exhibit more negative gravity
anomalies than their adjacent ridge segments. This finding indicates that there is a mass
deficit at intermediate and fast-slipping transform faults, which could reflect increased
rock porosity, serpentinization of mantle peridotite, and/or crustal thickening. The most
negative anomalies correspond to topographic highs flanking the transform faults, rather
than to transform troughs (where deformation is probably focused and porosity and
alteration are expected to be greatest), indicating that crustal thickening could be an
important contributor to the negative gravity anomalies observed. This finding in turn
suggests that three-dimensional magma accretion may occur near intermediate and fast-
slipping transform faults.

Published as P. M. Gregg, J. Lin, M. D. Behn, L. G. J. Montési, Spreading rate dependence of the gravity
structure of oceanic transform faults, Narture, 448, 183-187, 2007.

Reprinted by permission from Macmillan Publishers Ltd: [NATURE] (P. M. Gregg, J. Lin, M. D. Behn, L.
G. J. Montési, Spreading rate dependence of the gravity structure of oceanic transform faults, Nature, 448,
183-187,2007.), © 2007
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LETTERS

Spreading rate dependence of gravity anomalies
along oceanic transform faults

Patricia M. Gregg', Jian Lin®, Mark D. Behn’ & Laurent G. J. Montési’

Mid-ocean ridge morphology and crustal accretion are known to
depend on the spreading rate of the ridge. Slow-spreading mid-
ocean-ridge segments exhibit significant crustal thinning towards
transform and non-transform offsets’*, which is thought to arise
from a three-dimensional process of buoyant mantle upwelling
and melt migration focused bencath the centres of ridge seg-
ments'* 7% I contrast, fast-spreading mid-ocean ridges are
characterized by smaller, segment-scale variationsin crustal thick-
ness, which reflect more uniform mantle upwelling beneath the
ridge axis' . Here we present a systematic study of the residual
mantle Bouguer gravity anomaly of 19 oceanic transform faults
that reveals a strong correlation between gravity signature and
spreading rate. Previous studies have shown that slow-slipping
transform faults are marked by more positive gravity anomalies
than their adjacent ridge segments™***, but our analysis reveals
that intermediate and fast-slipping transform faults exhibit more
negative gravity anomalies than their adjacent ridge segments.
This finding indicates that there is a mass deficit at intermediate-
and fast-slipping transform faults, which could reflect inaeased
rock porosity, serpentinization of mantle peridotite, and/or crus-
tal thickening. The most negative anomalies correspond to topo-
graphic highs flanking the transform faults, rather than to
transform troughs (where deformation is probably focused and
porosily and alteration are expected to be greatest), indicating that
crustal thickening could be an important contributor to the nega-
tive gravity anomalies observed. This linding in turn suggests that
three-dimensional magma accretion may occur near intermediate-
and fast-slipping transform faults.

We analyse the residual mantle Bouguer gravity anomaly (RMBA)
from 19 oceanic transform fault systems and their adjacent ridge
segments at ultraslow- to fast-spreading mid-ocean ridges (Supple-
mentary Fig. 1) with fault slip rates of 1.3-14.5cmyr ™" and fault
lengths of 70-350km (see Methods). RMBA is used to infer local
density variations relative to a reference model that indudesa 6-km-
thick crust. A negative RMBA indicates a mass deficit, which can be
due to thickened crust, increased porosity, andior serpentinized
mantle. Conversely, a positive RMBA typically implies crustal thin-
ning. OQur results reveal a systematic disparity in the gravity signature
between ultraslow-/slow slipping transform faults and intermediate /
fast-dipping transform faults.

To illustrate these differences, we compare the RMBA at the fast-
slipping Siqueiros transform to the RMBA at the slow-slipping
Atlantis transform (Fig. 1). The 150-km-long Siqueiros transform
located at ~B.3°N on the East Padfic Rise is slipping at
~118emyr™" and includes five fault segments connected by four
intra-transform spreading centres* (Fig. lai. The ridge segments
to the north and south of Siqueiros are typical of fast-spreading
ridges with axial highs as shallow as 2.0-2.8 km. The ridge transform

intersections bounding Siqueiros display overshooting ridge tips'
typical of ridge transform intersections at magmatically robust ridge
segments (Supplementary Figs 2-5). In contrast, the 70-km-long
Atlantis transform at 30° N on the Mid-Atlantic Ridge is slipping at
~24cmyr " and contains a single strike-slip fault zone (Fig. 1b).
The ridge segments adjacent to the Atlantis transform display slow-
spreading rift valleys and a wide range of axial depths.

As seen in previous gravity studies of the Atlantis transform*7,
more negative RMBA is associated with adjacent ridge segment cen-
tres (up to ~80 mGal less than the transform offset), whereas the
maost positive RMBA is located in the transform fault and fracture
zone (Fig. 1d). In contrast, at Siqueiros more positive RMBA is
observed along the adjacent ridge segments and more negative values
are found within the transform fault and fracture zone domains (up
to ~40mGal less than the adjacent ridge segments). RMBA mini-
mums often correspond to bathymetric highs along the eastern and
southern flanks of the fault (Fig. 1c).

The difference in the average RMBA values between transform fault
domains and their adjacent ridge segments—ARMBA, _ —varies
systematically with spreading rate for the 19 transform faults induded
in this study (Fig. 2, see Methods section for ARMBAy - g aalcula
tion). ARMBA~+ - g > 0 implies more positive RMBA along the trans
form fault domain than along the adjacent ridge segments, whereas
ARMBAy .. g << 0 implics more negative values within the transform
fault domain. Along ultraslow- and slow-spreading ridges, the average
RMBA in transform fault domains is systematically more positive than
along the adjacent ridge segments with ARMBA; . g of up to45 mGal.
However, for spreading rates exceeding ~5cmyr ' the average
RMBA within transform fault domains becomes more negative than
on the adjacent ridge segments. Most intermediate- and fast-slipping
transforms are associated with ARMBA; g of —4 to —14mGal,
whereas the Blanco transform is associated with a ARMBA; . g of
—40mGal (Fig. 2 and Supplementary Table 1).

Previous studies attribute positive RMBA along slow-slipping
transform faults to decreased crustal accretion towards the end of
ridge segments and therefore crustal thinning within the transform
fault domain’***, If the negative RMBA observed atintermediate- and
fast-slipping transforms also reflects variations in crustal thickness,
these anomalies indicate crustal thickening within the transform
domain. However, negative RMBA can also arise from other factors,
such as cracking and alteration at transform fault offsets®**°, There-
fore, we use two-dimensional (2D) gravity models to estimate the
amplitude of ARMBA _ g corresponding to: (1) increased rock poro-
sity; (2) serpentinization of mantle peridotite: and (3) crustal thick-
ening (Fig. 3, Supplementary Fig. 7, and Supplementary Methods).

Low seismic velodities recorded in the Clipperton transform and
near the Siqueiros transform have been attributed to increased crack-
ing and porosity within the transform domain''®. The observed
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Figure 1| Comparison of bathymetry and RMBA of the Siqueirostransform
on the East Pacific Rise and Atlantis transform on the Mid-Atlantic Ridge,
atthe same map scale. a, Bathymetric map for the Siqueiros transtorm with
geologicinterpretation®. Solid black lines indicate the sealloor fabric, circles
show locations of scamounts, and dashed black lines show the locations of
the (racture zones and transtorm fault. The solid white line indicates the
location of the plate boundary used in the 3D thermal model. ITSCs are
labelled A, B, Cand D®™ NVZ, neo-volcanic zone; OSC, overlapping
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Figure 2 | Compilation of ARMBA _  values for the 19 transform systems
analysed. Thenew RMBA calculations from this study are marked with solid
circles. Previous RMBA studies are indicated by the open symbols: square™,
tiangle™ cross”, star'’, diamond'. Abbreviations for rdges: SWIR,
Southwest Indian Ridge: MAR, Mid-Atantic Ridge; 1dFR, Juande Fuca Ridge:
SEIR, Southeast Indian Ridge; EPR, East Pacific Rise. Abbreviations for
transform faults: Bo, Bouvet; 10, 1slas Orcadas; A B, Andrew Baim; PE, Prince
Edward: All, Atlantis I Mo, Moshesh; Ma, Marion; At, Atlantis; Hs, Hayes;
Kn, Kaneg; FT, Fifwen-Twenty; AFZ, Ascension; RG, Rio Grande; Bl, Blanco;
§2, SEIR2; S1, SEIRL; CL, Clipperton; Sq, Siqueiros; Wi, Wilkes; Ga, Garrett.
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spreading centre. b, Bathy metric map tor the Atlantis transform, The solid
black line indicates location of the plate boundary used in the 3D thermal
model, and the dashed portion indicates the Atlantis transform tault

¢, Calculated RMBA map for the Sigueiros transform fault with geologic
interpretation oserlad from a. d, Calculated RMBA map for the Atlantis
transform fault. Seabeam bathymetry compiled by the RIDGE multibeam
synthesis project (http:!focean ndgeldeo.columbia edu/general’html
home. html |,

decrease in seismic velodties of ~ 1 kms ™" in the Clipperton trans
form fault' can be explained by porosity increases in the range of
1-5.5% for crack aspect ratios of D.01-0.1 (ref. 19). Calculations in
Fig. 3 demonstrate that an average porosity increase of 27 % within
the upper crust down to the britde ducule transiwon (600 Ci s
required to produce the negative ARMBA;
=11mGal observed at fast slipping transtorms (Fig. 21 However,
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Figure 3 | Results of 2D forward models showing the predicted
ARMBA; _ ;. Dataare shown asa function of increase in crustal thickness
through layer 2A (dotted black line] or overall crustal thickening (solid black
line J; increases in porosity (@, red linel; or the presence of serpentinized
mante (green lines indicate percentage: green shading indicates serpentine
stability field ). Ah indicates change in layer thickness. Grey shadingindicates
the observed ARMBA( _ ¢ at fast-slipping transforms. The kink in the curve
for increase in layer 2A corresponds to thickening of layer 2A beyoad the
thickness of layer 2B in the reference model. See Supplementary Fig. 7 for
model details.
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Figure 4| Lateral variations in crustal thickness required to explain the
observed RMBA inthe Siqueiros transform system (Fig. 1¢). Excess crustis
defined as the deviation from the reference crustal thickness of 6 km,
assuming sea water, crust and mantle densities of 1,030, 2,730 and
3,300kgm *, respectively.

an increase in porosity in excess of 5% at slow-slipping transforms
will negate the effect of crustal thinning and result in negative
ARMBA; _ (Supplementary Fig. 7). Consequently, a porosity
increase of 2-5% is consistent with observed ARMBA; _ g and seis-
mic data at both slow- and fast-slipping transform faults.

Serpentinization of mantle peridotite can also generate negative
ARMBAT - g. However, the calculated 500 “C isotherm, which repre-
sents the upper limit of serpentine stabilitv®, is located within the
crust at all fast-slipping transform faults considered in this study
isee Methods) and therefore predicts no mantle serpentinization.
Invoking hydrothermal cooling (see Supplementarv Methods)
depresses the 500 °C isotherm to an average depth of 6.4km at
Siqueiros transform fault. Assuming 100% serpentinization {density
of 2,550kgm ) of the mantle where temperatures are <3500 °C.
results in a negative ARMBA; _ of 0 to —10mGal, which is slightly
less than the values of up to =14 mGal observed at fast-slipping trans-
form faults (Fig. 3). However, if 100% serpentinization were pervasive
above the 500°C isotherm at slow-slipping transform faults, it
would negate the effects of crustal thinning and produce negative
ARMBA; _ g <=100mGal (Supplementary Fig. 7g). Therefore,
although low degrees of mantle serpentinzation might contnibute
to the observed negative RMBA along fast slipping transform faults,
current thermal models for oceanic transform faults make it unlikely
that serpentinization alone can explain the systematic differences
between fast- and slow-slipping transforms.

Figure 5| A spreading-rate-dependent model of crustal accretion and
mantle upwelling based on observed RMBA calculations and morphological
features at transform fault systems on slow- and fast-spreading ridges.
Large yellow arrows indicate plate motion vectors; smaller black arrows
indicate mantle flow. The grey area with white outline represents the
lithosphere as defined by the 700 "Cisotherm, while the crust is identified by
dotted pattern. The blue cracks and the green wiggles indicate regions of
increased porosity and serpentinization, respectively. a, Slow-spreading

Finally, we estimate the magnitude of variations in crustal thick-
ness required to explain the RMBA observed along the Siqueiros
transform by inverting the observed RMBA relative to a reference
model with average crustal density of 2.730kgm ™ (ref. 1) (Fig. 4).
Along the eastern domain of Siqueiros transform, we predict an
excess crustal thickness of = 1.5 km, while in the western domain of
the transform and in the off-axis fracture zones excess crust ranges
from 0.5-1.5km. The ARMBA; - g observed at fast- slipping trans
form faults can also be produced by increasing laver 2A by 0.25-
0.6 km (Fig. 3).

Although increased rock porosity and mantle serpentinization
could both contribute to the observed negative RMBA along inter-
mediate- and fast-slipping transform faults, we believe that local
crustal thickening s probably the dominant mechanism. Areas of
localized deformation, such as fault zones, are expected to exhibit
enhanced cracking and alteration. However, the most negative
RMBA values observed at intermediate- and fast-slipping transform
faults correspond to bathymetric highs flanking the transforms
instead of the transform woughs where deformation is likdy tw be
localized. Local excess crust within intermediate- and fast-slpping
transform fault domains may result from a combination of magmatic
accretion mechamsms including: (1) lateral transport of excess
magma from the ridge axis into the transform fault domain'=; (2}
magmatic accretion at intra-transform spreading centres'; (3) the
pooling of lava within topographic lows™; and/or (1) 'leaky’ mag-
matic accretion along the entire transform fault®.

Lateral dyke propagation from a central magma chamber has
been proposed to explain crustal thickness variations along slow-
spreading ridge segments®. At magmatically robust segments along
intermediate and fast-spreading ridges, a continuous magma cham-
ber may exist beneath the entire segment and feed dvkes from the
ridge transtorm intersection into the transform fault domain. A pos-
sible geologic expression of this mechanism is overshooting ridge
tips, which are common bathymetric features of robust ridge seg-
ments at intermediate- and fast-spreading ridge transform intersec-
tions™ (see Supplementary Figs 2-5). Bathymetry and RMBA of
overshooting ridge tips at intermediate and fast- spreading ridges
suggest that dykes propagating along the ridge axis penetrate past
the transform fault into juxtaposed old oceanic crust, curve in the
direction of the transform, and locally increase the crustal thickness
of an already full-thickness crust (Fig. 5b). Gevlogic evidence from
the northwestern segment of Blanco transform indicates significant

N »/

| Ml?}'

ridges exhibit focused mantle upwelling at segment centres and crustal
thinning towards segment ends and transform faults. b, Fast-spreading
ridges have relatively uniform mantle upwelling. The negative ARMBA L _ ¢
at fast-spreading ridges may result from: (1) excess magma supply on ridge
segments causing over-shooting ridges and dyke injection into the transform
fault domain; (2) increased porosity within the transform; (3) actively
accreting ITSCs; (4) pooling of extruded lavas within the transform fault.
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increases in the extrusive lava laver with a possible overshooting ridge
upsource™. However, for this model to explain the RMBA along the
entire transform fault { rather than just in the fracture zone), trans
form parallel dvke propagation must extend at least half the distance
between ridge transform intersections (~30-75km). Bathvmetric
data demonstrate that overshooting ridge tips wrap around and into
transform faults, but the cause of this curvature 1s undear. Possible
explanations include response to the local stress fidd at the ridge
transform intersection, and/or dvke propagation along preferential
pathwavs created by pre-existing transform-paralld cracks.

Fast-slipping transform faults typically contain multiple fault seg-
ments separated by intra-transform spreading centres (17T8C) ™
Several ITSCs at East Pacific Rise transform faults have been sampled
and contain fresh basaltic lavas indicating crustal accretion within
the transform fault domain®#. In some cases, such as the Garrett
transform fault (Supplementary Fig 20, the TTSCs occurin pull -apart
basins and do not appear to increase the crustal thickness. Alter
natively, along the eastern portion of Siquetros transform (Fig. las
I'TSCs are associated with negative RMBA. Thus, I'TSCs may thicken
crust in some localities.

A third possible mechamsm for local crustal thickening 15 the
pooling of erupted lavas in topographic lows within the transform
fault domain®* (Fig. 3b). However. the majority of the negative
RMBA values we have observed correspond with  topographic
highs, indicating that this might not be a dominant mechanism
Finallv, because off-axis melt 15 considered abundant at fast-
spreading ridges®”, 'leaky’ magmatic accretion might occur along
the entire length of some transform faults™. This mechanism could
cause increases in crustal thickness and may be enhanced by trans
tensional forces acting upon a transform fault owing to plate motion
reorganizations®.

Thus the observed negative RMBA values at intermediate- and
fast-slipping transtorm faults mayv be the result of a combination of
mechanisms, induding increases in rock porosity, mantle serpentin-
ization and/or crustal thickening. Further detailed constraints are
required to distinguish among the potential contributors to the
observed gravity anomalies. However, the strony correlation of the
negative RMBA with topographic highs flainking the transforms sug
gests crustal thickening as a potenually important mechamsm for at
least some of the observed negative RMBA values. Systematic occur
rence of crustal thickening, if confirmed, would require a modifica-
tion of our current understanding of how three-dimensional magma
accretion occurs along intermediate- and fast-spreading ridgesin the
vicinmity of transform fault discontinuities.

METHODS SUMMARY

The mantle Bouguer anomaly was calculated following the method of ref. 1.
This technique removes the effect of seatloor topography and 6 km of reference
crust trom the satellite free air gravity®. The RMBA was calculated by removing
from the mantle Bouguer anomaly the effects oflithospheric coolingas estimated
from a three dimensional (3D} passive mantle upwelling model calculated
using the commercial finite-element modelling coftware package COMSOL
MULTIPHYSICS 3.2 (for model details see Supplementary Tables 1 and 2}
The RMBA reflects the deviation of sub-seafloor density structure from the
reterence model described in Supplementary Table 2. When constructing the
thermal models for segmented trans form faults, we incorporated the best known
geometry of transform faultsegments and assumed steady -state crustal accretion
at the ITSCs.

We detine ARMBA| _ g = [{(RMBA1—RMBAR,) ¢ (RMBA—RMBAR 1|2,
where RMBA g, and RMBAg; are the average RMBA values on the adjacent ridge
segments | and 2, respectively, and RMBAy is the average RMBA value along the
transtorm fault domain (see Supplementary Fig. B). Where digital data are avail-
able***, RMBA, and RMBAg, were calculated by averaging the values at the
centre ofeach adjacent ridge segment withina 20-km-wide and 50-km-long box.
At the East Pacific Rise, Juan de Fuca Ridge, and Southeast Indian Ridge, where
the transtorm tault zones are wider owing Lo segrentation, RMBA - was calcu-
lated by averaging over a 20-km-wide swath @ntred 20 km from the ridge trans-
form intersections. At the Mid-Atlantic Ridge and Southwest Indian Ridge the
RMBA values were averaged over a 10-km-wide swath centred 20 km from the

ridge transtorm intersections. Where digital data are unavailable' =", average

vilues were estimated trom published protiles and maps ot the transtorm taults
and their adjacent ridge swegments.

Full Methods and any azsocialed references are availabla in the online version of
the paper al www.nature com,/ralure
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METHODS

Because there is an inherent non-uniqueness in gravity calculations, we have
created several 2D torward models™ to yuantify the etfects of various mechan-
isms on the gravity signature of a ridge-transtorm system (Supplementary Fig.
71 The light blue and orange shaded regions in Supplementary Fig. 7 indicate
the extent ot ARMBA _  observed along transtorm taults at dow- and tast-
spreading rid ges, respectively. The density used for each of the layers is indicated
in Supplementary Fig. 7. These values do vary in nature'™ "

In thelirst suite of models we varied the crustal thickness by Ak either entirely
as 4 change ot layer 2A, layer 2B, or proportionally throughout the entire crust
(Supplementary Figs 7a, b and ¢, respectively!. All three mechanisms act
to decrease ARMBA | _ i within the range of fast-slipping transtorms with
21 kim otexcess material. Increasing layer 2A requires the least amount of excess
material with 0.25-0.6 ken. The kink in model A results from increasing layer 24
beyond the thickness of layer 2B.

The swond suite of models considers increased porosity in the brittle layer
ilemperatures <600 ‘Cl. Two 3D thermal models were calculated to obtain the
average depth w the 600 'C isotherm along the Sigueiros transtorm tault (1] the
initial 3D passivemantle upwelling model, outlinal in the Mdhod si thered dashed
line at ~3km depth on Supplementary Figs 7d and e/, and (2} 2 hydrothermally
cooled model in which heat conductivity is increased tenfold to 4 km depth (the
Dblue dashed line at6.4 km depth on Supplementary Figs 7d and el Density changes
due to variations in porosity are defined as pldd) = (1 - Doy~ Py, where P
is the porosity, e is the density of the host rock, and g1, is the density of sea
water. Assuming that the britde—ductile transition is at —3 km, porosity would
need 10 be increasad 2-79% 1o achieve the ARMBA| _ g values of magnitude

14 mGal observed at tast-slipping transtorm faclts.

Similar calculations were performed for slow-slipping transforms, assuming
a thicker brittle layer, as was calculated for the Atlantis transform fault. These
resuelts indicate that it is ditficult to explain the ARMBAy g at both fast and
slow-slipping transtorms stmultanco usly, assuming similar porosity structures
in both regions. Because itisunlikely that there will be large increases in porosity
down to ¥ km depth at slow-slipping transtorm taults, even though it is wathin
Lhe pressure wnstraints suggested by ret. 36, we have rerun the 2D slow slipping
transtorm model with increased porosity to 6 ki depth. While porosity increases
in excess of 5% still act w negate the etfect of crustal thinning at slow slipping
transtorm faults, moderate increases of 2-5% are consistent with ARMBA_ ¢
values at both slow- and fast-slipping transtorm faults (Supplementary Fig, Tel.

The final set of torward models includes serpentinization of the mantle
heneath the transtorm fault (Supplementary Figs 7fand g1, Asin the porosity
models, we have inwrporated two 3D thermal calculations at the Sigueiros
transtorm (o obtain average depths to the 500 °C isotherm, which limits the
serpentine stability field*® w 2.5km for uncooled and 6.4km for hydrothermally
cooled lithosphere. Without hy drothermal cooling the 500 -C isotherm lies well
within the upper crust and there is no predicted mantle serpentinization.
However, if hydrothermal cooling is applied from 0 1o 4 km depth, an end
member model of 100% serpentinization will result in a ARMBA - of

10mGal, which is the average of the observed ARMBAy _ ¢ tor fast-slipping
transtorm taults, It a similar model for mantle serpentinization is applied at a
slow-slip ping transtorm fault, mantle serpentinization down to the hydrother-
mally cooled 500 ‘Cisotherm would produce such a large negative RMBA that it
would completely offset the etfect ot crustal thinning, which isinconsistent with
observations,

Additionally, we calculated a modif<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>